通过整合外部知识可以增强机器学习。这种称为知识知识机器学习的方法也适用于预后和健康管理领域(PHM)。在本文中,通过帮助读者理解域的目标来审查各种知识知识机器学习方法。此外,还使用公共IMS和Prentia轴承数据集进行了解知识知识的机器学习技术,用于剩余使用寿命(RUL)预测。具体而言,从通过Weibull分布代表的可靠性工程领域获得知识。然后通过新颖的Weibull基损耗函数将知识集成到神经网络中。进行了对基于Weibull的损耗函数的全面统计分析,展示了该方法对手持数据集的有效性。但是,基于Weibull的损耗函数对IMS数据集的损失函数较小。该方法的结果,缺点和益处长度讨论。最后,所有代码都公开可用于其他研究人员的利益。
translated by 谷歌翻译
数字双技术被认为是现代工业发展的组成部分。随着技术Internet技术(IoT)技术的快速发展以及自动化趋势的增加,虚拟世界与物理世界之间的整合现在可以实现生产实用的数字双胞胎。但是,数字双胞胎的现有定义是不完整的,有时是模棱两可的。在此,我们进行了历史审查,并分析了数字双胞胎的现代通用观点,以创建其新的扩展定义。我们还审查并讨论了在安全至关重要的机器人技术应用中数字双胞胎中现有的工作。特别是,由于环境挑战,数字双胞胎在工业应用中的使用需要自动和远程操作。但是,环境中的不确定性可能需要对机器人进行仔细监控和快速适应,这些机器人需要防止安全和成本效益。我们展示了一个案例研究,以开发针对安全至关重要的机器人臂应用框架,并提出系统性能以显示其优势,并讨论未来的挑战和范围。
translated by 谷歌翻译
归一化的流提供了一种优雅的生成建模方法,可以有效地采样和确切的数据分布的密度评估。但是,当在低维歧管上支持数据分布或具有非平凡的拓扑结构时,当前技术的表现性有显着局限性。我们介绍了一个新的统计框架,用于学习局部正常流的混合物作为数据歧管上的“图表图”。我们的框架增强了最近方法的表现力,同时保留了标准化流的签名特性,他们承认了精确的密度评估。我们通过量化自动编码器(VQ-AE)学习了数据歧管图表的合适地图集,并使用条件流量学习了它们的分布。我们通过实验验证我们的概率框架可以使现有方法更好地模拟数据分布,而不是复杂的歧管。
translated by 谷歌翻译
开放程序代表全球手术的主要形式。人工智能(AI)有可能优化手术实践并改善患者结果,但努力主要集中在微创技术上。我们的工作通过策划,从YouTube,从YouTube,Open Surgical视频的最大数据集克服了培训AI模型的现有数据限制:1997年从50个国家上传的23个外科手术的视频。使用此数据集,我们开发了一种能够实时了解外科行为,手和工具的多任务AI模型 - 程序流程和外科医生技能的构建块。我们表明我们的模型推广了各种外科类型和环境。说明这种普遍性,我们直接应用了YouTube培训的模型,分析了在学术医疗中心前瞻性收集的开放式手术,并确定了与手动效率相关的外科技能的运动学描述符。我们的开放外科(AVOS)数据集和培训模式的注释视频将可用于进一步发展外科艾。
translated by 谷歌翻译
深度学习推荐模型(DLRM)是广泛的,占据了相当多的数据中心足迹,并每年增长超过1.5倍。使用模型尺寸很快在Tberytes范围内,利用存储类(SCM)的推理,可以降低功耗和成本。本文评估将内存层级扩展到DLRM的主要挑战,并提出了通过软件定义内存提高性能的不同技术。我们展示了基础技术,如NAND Flash和3DXP的差异化,并涉及现实世界场景,从而可以节省5%至29%。
translated by 谷歌翻译
Clinical diagnostic and treatment decisions rely upon the integration of patient-specific data with clinical reasoning. Cancer presents a unique context that influence treatment decisions, given its diverse forms of disease evolution. Biomedical imaging allows noninvasive assessment of disease based on visual evaluations leading to better clinical outcome prediction and therapeutic planning. Early methods of brain cancer characterization predominantly relied upon statistical modeling of neuroimaging data. Driven by the breakthroughs in computer vision, deep learning became the de facto standard in the domain of medical imaging. Integrated statistical and deep learning methods have recently emerged as a new direction in the automation of the medical practice unifying multi-disciplinary knowledge in medicine, statistics, and artificial intelligence. In this study, we critically review major statistical and deep learning models and their applications in brain imaging research with a focus on MRI-based brain tumor segmentation. The results do highlight that model-driven classical statistics and data-driven deep learning is a potent combination for developing automated systems in clinical oncology.
translated by 谷歌翻译
Large, labeled datasets have driven deep learning methods to achieve expert-level performance on a variety of medical imaging tasks. We present CheXpert, a large dataset that contains 224,316 chest radiographs of 65,240 patients. We design a labeler to automatically detect the presence of 14 observations in radiology reports, capturing uncertainties inherent in radiograph interpretation. We investigate different approaches to using the uncertainty labels for training convolutional neural networks that output the probability of these observations given the available frontal and lateral radiographs. On a validation set of 200 chest radiographic studies which were manually annotated by 3 board-certified radiologists, we find that different uncertainty approaches are useful for different pathologies. We then evaluate our best model on a test set composed of 500 chest radiographic studies annotated by a consensus of 5 board-certified radiologists, and compare the performance of our model to that of 3 additional radiologists in the detection of 5 selected pathologies. On Cardiomegaly, Edema, and Pleural Effusion, the model ROC and PR curves lie above all 3 radiologist operating points. We release the dataset to the public as a standard benchmark to evaluate performance of chest radiograph interpretation models. 1
translated by 谷歌翻译
Automatic music generation with artificial intelligence typically requires a large amount of data which is hard to obtain for many less common genres and musical instruments. To tackle this issue, we present ongoing work and preliminary findings on the possibility for deep models to transfer knowledge from language to music, by finetuning large language models pre-trained on a massive text corpus on only hundreds of MIDI files of drum performances. We show that by doing so, one of the largest, state-of-the-art models (GPT3) is capable of generating reasonable drum grooves, while models that are not pre-trained (Transformer) shows no such ability beyond naive repetition. Evaluating generated music is a challenging task, more so is evaluating drum grooves with little precedence in literature. Hence, we propose a tailored structural evaluation method and analyze drum grooves produced by GPT3 compared to those played by human professionals, exposing the strengths and weaknesses of such generation by language-to-music transfer. Our findings suggest that language-to-music transfer learning with large language models is viable and promising.
translated by 谷歌翻译
Designing experiments often requires balancing between learning about the true treatment effects and earning from allocating more samples to the superior treatment. While optimal algorithms for the Multi-Armed Bandit Problem (MABP) provide allocation policies that optimally balance learning and earning, they tend to be computationally expensive. The Gittins Index (GI) is a solution to the MABP that can simultaneously attain optimality and computationally efficiency goals, and it has been recently used in experiments with Bernoulli and Gaussian rewards. For the first time, we present a modification of the GI rule that can be used in experiments with exponentially-distributed rewards. We report its performance in simulated 2- armed and 3-armed experiments. Compared to traditional non-adaptive designs, our novel GI modified design shows operating characteristics comparable in learning (e.g. statistical power) but substantially better in earning (e.g. direct benefits). This illustrates the potential that designs using a GI approach to allocate participants have to improve participant benefits, increase efficiencies, and reduce experimental costs in adaptive multi-armed experiments with exponential rewards.
translated by 谷歌翻译
Modelling and forecasting real-life human behaviour using online social media is an active endeavour of interest in politics, government, academia, and industry. Since its creation in 2006, Twitter has been proposed as a potential laboratory that could be used to gauge and predict social behaviour. During the last decade, the user base of Twitter has been growing and becoming more representative of the general population. Here we analyse this user base in the context of the 2021 Mexican Legislative Election. To do so, we use a dataset of 15 million election-related tweets in the six months preceding election day. We explore different election models that assign political preference to either the ruling parties or the opposition. We find that models using data with geographical attributes determine the results of the election with better precision and accuracy than conventional polling methods. These results demonstrate that analysis of public online data can outperform conventional polling methods, and that political analysis and general forecasting would likely benefit from incorporating such data in the immediate future. Moreover, the same Twitter dataset with geographical attributes is positively correlated with results from official census data on population and internet usage in Mexico. These findings suggest that we have reached a period in time when online activity, appropriately curated, can provide an accurate representation of offline behaviour.
translated by 谷歌翻译